
226 TINS Vol. 21, No. 6, 1998 Copyright © 1998, Elsevier Science Ltd. All rights reserved. 0166 - 2236/98/$19.00     PII: S0166-2236(97)01203-4

mode, which is observed when the hyper-
polarization of the cell yields a membrane
potential below –65mV, is characterized by
a higher signal-to-noise ratio and therefore
better signal detectability than the linear
summation of tonic firing. For the recon-
struction of the input signal switching from
burst to tonic firing is then required.

The dualism of feedforward hierarchies
on the one hand and intrinsic parallel pro-
cessing and top-down feedback modulation
on the other seems to apply not only to
visual cortex and LGN, but also to the 
primate retina. Whereas Barry B. Lee
(Göttingen, Germany) stressed that lumi-
nance and chromatic channels are separ-
ated already at the level of retinal ganglion or
even bipolar cells, Heinz Wässle (Frankfurt,
Germany) described the highly intercon-
nected architecture of the inner plexiform
layer that lends itself to early parallel pro-
cessing immediately after the receptor level.

Separate hierarchies and
consciousness

The separation of channels for luminance
and chromatic signals into the magnocellular
and parvocellular pathways, respectively,
continues at the extrastriate cortical level
with the distinction of dorsal and ventral
processing streams. Yet, although at lower
levels both pathways are represented in
adjacent regions or even interleaved, and
cross-talk is therefore anatomically conceiv-
able, the mechanism of interaction between
the dorsal and ventral streams in extrastriate
visual cortex has for a long time been a

source of perplexity. Semir Zeki (London,
UK) presented evidence from psychophysi-
cal and lesion studies for two separate,
largely autonomous systems for colour and
motion that complete their perceptual tasks
at different times and can be destroyed
selectively. Consciousness, or rather aware-
ness, would then have to be modular, poss-
ibly enabled by brainstem mechanisms,
which Zeki claimed to have identified by
functional magnetic resonance imaging of the
blindsight subject GY (Ref. 10). The blind-
sight paradigm might also elucidate the role
of the PVC in conscious awareness11. How-
ever, Michael J. Morgan (London, UK) dis-
cussed mechanisms of dichoptic masking
and suggested that the dissociation of per-
formance and awareness that has been re-
ported for dichoptic displays and termed
‘blindsight in normal observers’12 might be
difficult to replicate13. Further topics in-
cluded the control of eye and eyelid move-
ments (José M. Delgado García, Sevilla,
Spain), the development of visual cortical cell
properties (Pierre Buisseret, Paris, France;
Tobias Bonhoeffer and Frank Sengpiel,
Munich, Germany), connectivity patterns
of interneurons (Javier De Felipe, Madrid,
Spain), colour processing (Stewart H.
Hendry, Baltimore, MD, USA), and object
recognition (David Van Essen, St Louis, MO,
USA; Tomaso Poggio, Cambridge, MA,
USA).

The workshop was concluded by a lively
discussion about future research strategies,
during which Zeki urged the assembled
neuroscientists to go beyond the analysis

of receptive fields and the transmission of
afferent input in order to obtain a new
level of understanding of the mechanisms
of visual perception. Whereas few of the
attendants would be likely to agree that
the careful analysis of retinal, thalamic and
cortical cell properties has had its time,
there was a general consensus that the
experimental results presented by Sillito,
Orban and others had revealed deficits in
the classical receptive-field theory and that
some time-honoured dogmas had to be
discarded. Or as Gregory would have it: all
theoretical mechanisms are imaginary, but
some imaginary mechanisms are mythical.
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V I E W P O I N T

Mathematical guidance for axons
Geoffrey J. Goodhill

Axon guidance by gradients plays an important role in wiring up the developing nervous system.
Growth cones seem to sense a concentration difference across their spatial extent, and convert
this into a signal to move up or down a gradient. In this article, a simple mathematical framework
is developed to understand when and where gradient detection can occur as a function of gradient
shape.This framework is applied to two examples:the guidance of axons by target-derived diffusible
factors in vivo and in collagen gels, and guidance by substrate-bound gradients of optimal shape, as
might be relevant in the retinotectal system.Two distinct spatial limits on guidance emerge:1 mm
for a target-derived diffusible gradient, and 1 cm for a substrate-bound gradient.
Trends Neurosci. (1998) 21, 226–231

HOW ARE AXONS GUIDED to appropriate targets
during development? Although first addressed by

Ramón y Cajal over 100 years ago, a new wave of
interest in this question has recently been generated

by the identification of some of the genes and pro-
teins involved in axon guidance, and the spectacular
discovery that many of the mechanisms and mol-
ecules are conserved between animals ranging from
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nematodes to Drosophila to mammals1. One important
mechanism is the guidance of growth cones by gradi-
ents of attractive or repellent factors2. Two ways in
which these gradients can be set up are by diffusion
(for example, in the guidance of commissural axons to
the floor plate in the spinal cord3) and by graded
expression of guidance molecules in the substrate (for
example, in the retinotectal projection4,5). What are
the theoretical ideas underpinning axon guidance by
gradients? Intuitively, they are easy to understand. For
diffusible factors, the target releases molecules, which
then diffuse creating a higher concentration near the
target than further away. For non-diffusible factors
local concentrations of transcription factors, can be
translated into local concentrations of ligand molecules
in the substrate. In both cases, the growth cone evalu-
ates the change in concentration of factor over its 
spatial extent, and moves in the direction of increas-
ing concentration (or decreasing concentration in the
case of repellent factors). However, it is important to
analyse these intuitive ideas more quantitatively. A
mathematical understanding of what is, and is not,
possible by such processes provides quantitative
insight into the constraints under which the develop-
ing nervous system operates, predicts parameter 
values, and inspires novel experiments to probe the
basic mechanisms of guidance. In this article, some
examples are discussed of how simple mathematical
reasoning can be used to predict the maximum distance
over which guidance could be possible both for a dif-
fusible factor and for a factor expressed in, or bound
to, the substrate. 

Constraints on guidance 

Imagine a growth cone that has receptors for a
chemotropic factor encountering a gradient of that
factor. At one end of the growth cone the concen-
tration of factor is C, while at the other end it is C + DC
(Fig. 1). It is plausible to assume that the growth cone
senses this difference in concentration DC and hence
the direction of the gradient by measuring, over some
finite time period, the average of the number of recep-
tors bound at one end of the growth cone compared
with the other. Although this problem has been analysed
mathematically in other biological contexts6,7, little is
known about the particular mechanisms that growth
cones use to achieve this feat. 

There are three main physical limits that must be
considered: first, if the concentration of the factor is
too high compared with the dissociation constant for
the receptor–ligand complex, almost all the receptors
will be bound most of the time, yielding little differ-
ence in binding across the extent of the growth cone;
second, if the concentration of the factor is too low
compared with the dissociation constant, almost none
of the receptors will be bound at any given moment,
again yielding little difference in binding; and third,
the difference in concentration across the growth
cone must be large enough to overcome ‘noise’ in the
binding process and in the intracellular signalling that
turns a binding difference into directional information
(for discussion see Ref. 7). For guidance to be possible
at some particular position in the gradient, all of these
constraints must be simultaneously overcome at that
position. Another prerequisite for a quantitative analysis
is to decide which aspect of the change in concen-
tration across the growth cone is most important for

gradient detection. Perhaps the simplest aspects to
consider are the absolute change DC and the fractional
change DC/C. The latter represents a form of adap-
tation to a stimulus, and has been implicated in bac-
terial chemotaxis8. Although the sensitivity of growth
cones is usually described in terms of percentage (i.e.
fractional) changes, there are few quantitative data for
growth cones that can distinguish between these two
possibilities. The consequences of both will therefore
be considered.

Diffusible factors

Target-derived diffusible factors have been impli-
cated in the guidance of axons from the trigeminal
ganglion to the maxillary process in the mouse9,10, in
the guidance of commissural axons in the spinal cord
to the floor plate3, and of axons and axonal branches
from the corticospinal tract to the basilar pons11. The
creation, by diffusion, of gradients suitable for impart-
ing positional identity during morphogenesis was
analysed mathematically by Crick12. He assumed that
the important constraint in this case is that, within a
few hours, the concentration of factor must reach 99%
of its final stable value everywhere in the system. For
a model that consists of a point source and a point
sink in one dimension, this yields a maximum length
scale for such a gradient of about 1 mm. However, the
creation of gradients suitable for guiding axons by dif-
fusion poses different constraints: whether or not the
concentration of guidance factor is close to reaching
its final stable value is no longer important. Rather,
what matters is that the three constraints described
earlier are satisfied: in particular, the change in con-
centration across the growth cone must be sufficiently
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Fig. 1. A growth cone encountering a gradient of increasing con-
centration of a chemoattractant. The spatial extent of the growth
cone is Dr, and the concentrations at its two ends are C and C 1 DC.
For diffusible factors this gradient can be created by the release of fac-
tor (shown as small black circles) from a target (depicted by the uneven
shape with arrows, bottom right), shown here at a rate of q nM s21.
Gradients can also be set up in other ways, for example, by translation
of morphogenetic gradients. The same ideas apply for chemorepellent
factors; in this case, DC is converted into a growth signal in the 
opposite direction.
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large. In order to calculate the size of this change and
how it evolves with time it is necessary to assume a
particular model for the diffusion of a factor in vivo
and in vitro. Perhaps the simplest assumption (Fig. 1)
is that a small target continuously produces factor at a
constant rate into a large volume. This is probably a
better model of a three-dimensional (3-D) collagen-gel
assay than an in vivo situation, where the presence of
different types of tissue weakens the uniformity
assumption. The concentration of the factor as a func-
tion of distance r from the target after time t has
elapsed from the start of factor production C(r,t), is
then given by: 

(see for example Ref. 13), where erfc is the comple-
mentary error function, D is the diffusion constant of
the factor through the substrate and q is the rate of
factor production by the target. Using this equation
and estimates for the parameters (Box 1), it is possible
to calculate when and where the constraints men-

tioned earlier are satisfied, that is, when and where
guidance of a growth cone is possible. The fractional-
change situation has been analysed in Ref. 14 (see also
Box 1). For longer time periods (a few days) after the
start of factor production, the maximum range is inde-
pendent of the diffusion constant and is about 1 mm
(Fig. 2). This value fits well with what has been
observed in 3-D collagen-gel cultures, and with the
fact that target and growth cone are not separated by
more than a few hundred micrometers in vivo in the
case of guidance of axons from the trigeminal ganglion
to the maxillary process in the mouse9,10, or of com-
missural axons in the spinal cord to the floor plate3.
This limit is due to the requirement that there is a
minimum change in concentration across the growth
cone; the minimum-concentration constraint is easily
satisfied at this time. The similarity with Crick’s value
is coincidental, because the two limits come from dif-
ferent models that are subject to different constraints.
At earlier time points, however, the factor is more
unevenly distributed, being more concentrated
around the source. This makes the fractional change
larger than at later times, increasing the range over
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In order to derive quantitative limits on guidance from
the mathematical models described in the text, it is necess-
ary to estimate values for the following parameters: the
diffusion constant, the minimum concentration change
detectable by the growth cone, the rate of production of
diffusible factor by the target, the width of the growth
cone, and the maximum and minimum concentrations at
which gradient detection is possible. Extrapolating from
values measured directly for other moleculesa,b, a reason-
able estimate for the diffusion constant D for a molecule
such as netrin-1 diffusing through collagen is approxi-
mately 1027 cm2 s21 (Ref. c); the rate of diffusion in vivo
may be affected by binding to the substrate. The mini-
mum concentration change detectable by a growth cone
has been estimated to be about 1% (Ref. d), which is in
keeping with quantitative analyses for leukocyte chemo-
taxise. This gives a fractional change of DC/C 5 0.01. Both
theoretical and experimental results from leukocyte
chemotaxis suggest that the smallest concentration
change can be detected when the local concentration is
equal to the dissociation constant KD (Ref. e). Therefore,
the minimum absolute concentration change detectable
is DC = 0.01KD. For some of the molecules implicated in
axon guidance, KD is of the order of 1 nM, a value that can
also be derived on theoretical groundsf. The rate of factor
production q is hard to estimate. Gundersen and Barrettg,h

directed the movement of a growth cone with NGF
released from a pipette at a rate of about 3 310211nM s21

(Ref. i), while Lohof et al.j studied growth cone turning 
in response to cAMP released from a pipette at a rate 
of 1025nM s21. It is argued in Ref. c that 1027nM s21 is a 
reasonable estimate for q. The upper and lower concen-
tration limits are taken to be 10KD and KD/100 respectivelyk,
and a growth cone size Dr of 10 mm is assumed. Consider
the concentration gradient created by a diffusible factor
specified by the eqn:

for large time periods (this is easier to analyse than the
full time-dependent eqn).

For the fractional-change case, we require:

(the minus sign can be dropped as the direction of the
gradient is irrelevant to the calculation). The maximum
guidance distance rmax is therefore: 

rmax 5 100Dr

For the parameters above, this gives rmax 5 1 mm. For
the absolute-change case, we require:

The maximum guidance distance is :

Remarkably, for the parameter values quoted above,
this is also approximately 1 mm. This estimate is less
robust to parameter variation than the fractional-change
case, because it depends on q, D and KD as well as Dr.
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which guidance can occur (Fig. 2). Depending on the
parameters, the model predicts that guidance could be
possible at distances of several millimeters before the
distribution of factor reaches equlibrium. This is par-
ticularly the case for a large molecule that diffuses
slowly because the change across the growth cone
remains larger for longer. It is conceivable that such a
mechanism might be utilized in vivo to extend the
guidance range beyond the 1 mm limit imposed once
the gradient has stabilized. The lower limit on guid-
ance, that is, the distance from the target at which
Cmax is exceeded, is extremely small for the parameters
in Box 1; of the order of 10 mm. The absolute-change
case is mathematically different. By coincidence how-
ever, for the parameters discussed in Box 1, the maxi-
mum guidance range is again approximately 1 mm
(Box 1). It is now also a function of both D and q: the
model predicts guidance over a distance proportional
to the square root of q. These theoretical predictions
could be used to distinguish between the absolute-
and fractional-change cases in a 3-D collagen-gel
assay. The absolute-change model predicts guidance
over a range that increases with the rate at which fac-
tor is released; this could be tested by examining the
maximum guidance range for target explants of vary-
ing sizes (assuming larger explants release more factor)
or for different densities of transfected cells expressing
the factor15. The fractional-change model predicts no
extension of guidance range as the rate of release is
varied.

Substratum-bound gradients

For substratum-bound gradients, constraints on gra-
dient shape arise from constraints on how morpho-
genetic gradients can be translated into gradients of
ligand expression. Herwig Baier and the author have
recently addressed the question of what is the optimal
gradient shape, that is, the shape that would guide
growth cones over the maximum possible distance16.
Given similar assumptions about growth-cone sensing
to those used above for the diffusible-factor calcu-
lations, the answer turns out to be straightforward16.
In the absolute-change model, the guidance range is
maximized when there is the minimum detectable
change in concentration DC across the growth cone at
every point in the gradient. In this case, the optimal
shape is linear and the maximum guidance distance is
about 1 cm (using the parameters in Box 1). In the
fractional change model, the guidance range is maxi-
mized when there is the minimum detectable fractional
change in concentration DC/C across the growth cone:
now, the optimal shape is exponential. However, the
maximum guidance distance is again about 1 cm. These
two cases are compared in Fig. 3. This distance of 1 cm
represents an upper limit on guidance distance,
because it assumes that a growth cone can sense, over
a very wide concentration range, the smallest change
in concentration it is capable of detecting when the
concentration is optimal (equal to the dissociation
constant). 

To guide axons over longer distances, several gradi-
ents of different ligands spaced at regular intervals
could be imagined. It is possible that such a mecha-
nism might operate in the retinotectal system16. The
length of the developing tectum is of the order of 1 cm,
and axons might be guided to appropriate targets 
by gradients of attractive and repellent molecules17,18.

Two recently identified molecules that are expressed
in gradients in the tectum are ephrin-A5 (formerly
RAGS)4 and ephrin-A2 (formerly ELF-1)5,19. Both bind
to members of the Eph family of receptors, some of
which are expressed in gradients in the retina
(reviewed in Ref. 20). The ephrin-A2 gradient spans
the entire tectum, whereas the ephrin-A5 gradient is
shifted posteriorly in the tectum and is absent from
the anterior tectum (where retinal axons enter)4,5,19.
Ephrin-A5 has a significantly higher affinity than
ephrin-A2 for the Eph receptors EphA3 (formerly
Cek4), EphA4 (formerly Cek8) and EphA5 (formerly
Cek7), which are expressed in gradients in the retina21.
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Fig. 2. Interaction of constraints for guidance by a diffusible factor with molecules of different
sizes. (A) Interaction of constraints for guidance by a diffusible factor in the fractional-change model
for a large molecule with a diffusion constant D 5 1027cm2s21. (B) Interaction of constraints for
guidance by a diffusible factor in the fractional-change model for a slightly smaller molecule with
D 5 5 x 1027cm2s21. (D is expected to scale approximately inversely with the cube root of the
molecular weight). Both graphs show the time at which two constraints are satisfied at each
distance: the low concentration limit, labelled C, where not enough receptors are bound for a
gradient signal to be detected (assumed to be KD/100 with KD 5 1 nM), and the fractional-change
constraint, labelled p (assumed to be DC/C 5 1%). The region between the two curves in each
graph represents where guidance is possible. In both cases, the guidance limit imposed by the
fractional-change constraint, once the gradient has stabilized, is 1 mm. However, guidance range
is extended at earlier time points, when the fractional-change constraint has yet to take full effect.
This is particularly apparent for the slowly diffusing molecule (D = 10–7 cm2 sÐ1) shown in (A).
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Fig. 3. The shape of the gradient that gives guidance over the maximum distance is de-
termined by the gradient reading mechanism. (A) In the absolute-change case, the optimal
gradient is linear and the maximum guidance range is given by:

where p is the minimum fractional change detectable by the growth cone (assumed to be 1%).
(B) In the fractional-change case, the optimal gradient is exponential and the maximum 
guidance range is given by:

For the parameter values given in Box 1, rmax is about 1 cm in both cases. See Ref. 16 for 
further details.
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It is thus possible that ephrin-A5 could take over guid-
ance by acting on the same receptors as ephrin-A2
when the concentration of ephrin-A2 becomes too
high to provide an effective guidance signal16. Also,
the two guidance mechanisms make different predic-
tions about optimal gradient shapes (linear versus ex-
ponential), and it might thus be possible to distinguish
them by detailed measurement of gradient shapes 
in vivo. 

Discussion 

For a target-derived diffusible factor, a simple math-
ematical analysis suggests a maximum range of guid-
ance by the gradient of about 1 mm. The maximum
guidance range possible by a single gradient of opti-
mal shape is about 1 cm. What are some of the princi-
pal assumptions and simplifications that have been
made to derive these limits? First, it was assumed that
the growth cone is the only part of the neuron
involved in gradient sensing, which allows straight-
forward analogies with leukocyte chemotaxis. If the
axon shaft also expresses receptors for the guidance
molecule, it could, in principle, compare the amount
of ligand bound at different parts along its length in
order to detect the gradient. This could increase Dr,
and thus the maximum guidance distance predicted
by the model, by several orders of magnitude. There
are certainly cases where the axon shaft displays sen-
sitivity to diffusible ligands, for example in the gen-
eration of branches from corticospinal axons in
response to cues from the basilar pons11. However,
more generally, axons have not been shown to exhibit
the exquisitely sensitive responses to guidance cues
that have been demonstrated for growth cones22,23,
and there is currently no direct evidence for an inte-
gration of information regarding the amount of ligand
bound between widely separated parts of the axon. 

Second, it was assumed that the growth cone inte-
grates binding information across its spatial extent to
determine the direction of the gradient in a similar
manner to leukocytes, rather than adopting a tempo-
ral mechanism analogous to that used by bacteria.
Bacteria compare local concentrations over time, and
randomly reorient their direction of motion (‘tum-
bling’) with a frequency that depends on whether the
concentration they detect is increasing or decreasing
(reviewed in Ref. 24). However, the paths followed by
individual bacteria in a gradient are therefore biased
random walks, while time-lapse imaging of individual
growth cones shows that they follow much smoother
paths than this22,25. In addition, bacteria and growth
cones operate in radically different parameter regimes.
Bacteria are small and fast, moving at speeds of the
order of 20 cell diameters per second26. A growth cone
of size 10 mm on the other hand, moving at about
1 mm per day, takes about 15 min to move one growth
cone diameter. The time over which a ‘memory’ for a
previous concentration would need to be maintained
in a growth cone is therefore about four orders of 
magnitude longer than that for a bacterium. Such an
extended recall of precise levels of receptor binding
seems unlikely. Individual filopodia move on a much
faster timescale and so could perhaps use a temporal
comparison mechanism; however, because the growth
cone is effectively stationary during this time, this
reduces to a spatial comparison across the width of the
growth cone. 

Third, the influence of the growth cone on the gra-
dient has been neglected. For example, at a local con-
centration of KD, half of the molecules in the vicinity
of the growth cone should be bound. Although this
introduces a local perturbation of the gradient, unless
there is an extremely high density of growth cones,
the effect on the shape of the gradient on a larger scale
is negligible. The average time for a molecule to dif-
fuse across a distance of the extent of the growth cone
(using the parameters in Box 1) is about 1 s, and there-
fore the missing molecules can quickly be replaced
from the surrounding volume.

Fourth, the tissue or collagen gel has been assumed
to have infinite volume. With the parameters given in
Box 1, the average concentration in a finite block of
tissue of side length 1 mm becomes quite large quite
quickly. In reality, factors are probably removed by
localized or distributed sinks. The effects of two types
of distributed sinks are discussed in Ref. 14. If a revers-
ible binding process is assumed, so that the amount of
factor bound at any time is proportional to its local
free concentration, the effective diffusion constant will
be reduced, but the gradient will be otherwise un-
changed. If, instead, the factor is irreversibly removed
everywhere, at a rate proportional to the concentration,
the concentration is simply multiplied by an exponen-
tial factor that decays with time. The rate of decay is
the proportionality constant between the rate of bind-
ing and the free concentration. In both cases the 1 mm
limit is unaltered in the fractional-change model. 

The approach taken in this paper can be thought of
as being at a ‘thermodynamic’ level of description.
The bulk constraints on guidance that have been
analysed arise from processes occurring at a lower,
‘statistical–mechanical’ level. As a physical analogy,
the specific heat capacity of solids is treated as a param-
eter to be measured in classical thermodynamics. A
statistical–mechanical level description derives this
parameter from an analysis of the thermally induced
oscillations of individual molecules within a solid. A
statistical–mechanical level model for growth cone
guidance would include details such as: the statistics
of receptor binding; the timescale over which the
growth cone integrates binding information to deter-
mine direction; the distribution of receptors over the
filopodia, lamellipodia and body of the growth cone;
the intracellular signalling systems that link receptor
binding to a directed movement signal; and the
dynamics of changes to the cytoskeleton. A complete
quantitative analysis at this level would allow the
bulk-level constraints to be explicitly derived, directly
address the question of the relative importance of
absolute versus fractional changes, and allow the
above estimates of maximum guidance range to be
substantially refined. A model at this level, however,
requires numerous assumptions to be made about
mechanisms and parameter values that are currently
underconstrained by experimental data. An advantage
of the thermodynamic-level approach is that it is not
concerned with the details of these lower-level mecha-
nisms, but operates only with their directly measurable,
higher-level consequences.

The evolutionary significance of absolute spatial limits
on axon guidance by gradients has not been explored.
The anatomy of a system where guidance is required
over a few hundred microns in a mouse embryo cannot
just be scaled up to give equivalent guidance in a
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larger embryo. Unfortunately, it is hard to develop this
argument further at present: there is very little data
about the timing of axon guidance events in large ani-
mals, and thus the spatial separation between axons
and target at the time guidance is required is un-
known. A quantitative consideration of the factors
that constrain axon guidance by gradients leads to
both a deeper understanding of the biological system
and suggestions for new experiments. As discussed
earlier, it might be possible to distinguish between the
absolute- and fractional-change models by appropriate
measurements in vivo and in collagen-gel assays. From
an experimental point of view, it would also be useful
to apply to growth cones the kind of quantitative in-
vestigations using known gradients of controlled form
that have been used to characterize chemotaxis in 
bacteria8 and leukocytes27. Only then will a truly quan-
titative description of axon guidance by gradients
emerge. 
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Simulation in neurobiology: theory or
experiment?
Daniel J. Amit 

Investigation in neurophysiology usually involves measurements of large population-average signals
or small sample recordings. There is an underlying assumption that the observations express
activity of large groups of similarly acting neurons that is the result of a bottom-up scenario in
which individual cells, via their synaptic interactions, lead to the large scale phenomena. The
connection between the levels must be provided by theory, which must also provide the relevant
variables for observation. It is suggested that between the experiment and the full theory there is
a creative, mixed role for simulation: both experimental and theoretical. A simulation presents
complex dynamics and hence is an empirical board for testing theoretical tools, yet its controlled
behaviour can make predictions about the biological system.
Trends Neurosci. (1998) 21, 231–237

NEUROPHYSIOLOGY AIMS to decipher the behav-
iourally relevant dynamics of large assemblies of

neurons. Experiments involve either the measurement of
behaviour of small samples of neurons (as in electrode
recordings) or averaged signals of large numbers of neur-
ons (such as with EEG and MRI). Phenomena observed
in electrode sampling must represent large scale features
or they would not be detectable. Signal averages (from
several million cells and over tens of cortical mm2) are
of interest if they represent the concerted dynamics of
neurons and synapses; some notion that connects the
presumed underlying structure of neurons and syn-
apses to the large scale dynamics is needed, and this
requires a theoretical framework. The details of the
underlying system are not fully understood, nor is the

level of detail required for the production of the sampled
or averaged phenomena. One way to proceed is to set
up models for the system, simulate them, and compare
the behaviour of the simulated system to an accom-
panying theory whose role it is to identify the relevant
global degrees of freedom on the one hand, and to
sample recordings from brain on the other hand. Large-
scale simulation is becoming an ever more prominent
feature in the study of neural systems from detailed,
small scale descriptions of single cells such as cable
theory models1–3, to large scale networks of simplified
neurons4–6 that exhibit various types of collective dy-
namics. In-between these two extremes are simulations
that combine complex ionic, neurotransmitter and
neural structure with large scale features7. However,
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