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Many different algorithms and objective functions for topographic map-
pings have been proposed. We show that several of these approaches can
be seen as particular cases of a more general objective function. Consid-
eration of a very simple mapping problem reveals large differences in
the form of the map that each particular case favors. These differences
have important consequences for the practical application of topographic
mapping methods.

1 Introduction

The notion of a topographic mapping that takes nearby points in one space
to nearby points in another appears in many domains, both biological and
practical. A number of algorithms have been proposed that claim to con-
struct such mappings (reviewed in Goodhill & Sejnowski, 1996). However, a
fundamental problem with these claims, or the claim that a particular given
mapping is topographic, is that the computational-level meaning of topog-
raphy has not been formally defined. Given the wide variety of contexts in
which topography or degrees of topography are discussed, it is unlikely that
an application-independent definition would be generally useful. A more
productive goal is to attempt to lay bare the assumptions behind differ-
ent approaches to topographic mappings, and thus clarify the relationships
among them. In this way, the hope is to make it easier to choose the appro-
priate approach for a particular problem.

In this article, we introduce an objective function we call the C measure
and show that it has the capacity to unify several different approaches to
topographic mapping. These approaches constitute particular instantiations
of the functions from which the C measure is constructed. We then consider
a simple mapping problem and explicitly optimize different versions of the
C measure. It becomes apparent that the “optimally topographic” map can
radically change depending on the particular measure employed.
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2 The C measure

For the purposes of this article, we consider only bijective (1-1) mappings
and a finite number of points in each space. Some mapping problems intrin-
sically have this form, and many others can be reduced to this by separating
out a clustering or vector quantization step from the mapping step.

Consider an input space Vin and an output space Vout, each of which
contains N points (see Figure 1). Let M be the mapping from points in Vin
to points in Vout. We use the word space in a general sense: either or both
of Vin and Vout may not have a geometric interpretation. Assume that for
each space there is a symmetric similarity function that, for any given pair
of points in the space, specifies by a nonnegative scalar value how similar
(or dissimilar) they are. Call these functions F for Vin and G for Vout. Then
we define a cost function C as follows,

C =
N∑

i=1

∑
j<i

F(i, j)G(M(i),M(j)), (2.1)

where i and j label points in Vin, and M(i) and M(j) are their respective
images in Vout. The sum is over all possible pairs of points in Vin. Since
we have assumed that M is a bijection, it is therefore invertible, and C can
equivalently be written as

C =
N∑

i=1

∑
j<i

F(M−1(i),M−1(j))G(i, j), (2.2)

where i and j label points in Vout, and M−1 is the inverse map. A good
mapping is one with a high value of C. However, if one of F or G is given

i j

Vin Vout

q

M
F(i,j)

G(p,q)

p

Figure 1: The mapping framework.
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as a dissimilarity function (i.e., increasing with decreasing similarity), then
a good mapping has a low value of C. How F and G are defined is prob-
lem specific. They could be Euclidean distances in a geometric space, some
(possibly nonmonotonic) function of those distances, or they could just be
given, in which case it may not be possible to interpret the points as lying
in some geometric space. C measures the correlation between the F’s and
the G’s. It is straightforward to show that if a mapping that preserves or-
derings exists, then maximizing C will find it. This is equivalent to saying
that for two vectors of real numbers, their inner product is maximized over
all permutations within the two vectors if the elements of the vectors are
identically ordered, a proof of which can be found in Hardy, Littlewood,
and Pólya (1934, p. 261).

3 Measures Related to C

Several objective functions for topographic mapping can be seen as versions
of the C measure, given particular instantiations of the F and G functions.

3.1 Metric Multidimensional Scaling. Metric multidimensional scal-
ing (metric MDS) is a technique originally developed in the context of psy-
chology for representing a set of N entities (e.g., subjects in an experiment)
by N points in a low- (usually two-) dimensional space. For these entities
one has a matrix that gives the numerical dissimilarity between each pair
of entities. The aim of metric MDS is to position points representing enti-
ties in the low-dimensional space so that the set of distances between each
pair of points matches as closely as possible the given set of dissimilarities.
The particular objective function optimized is the summed squared devia-
tions of distances from dissimilarities. The original method was presented
in Torgerson (1952); for reviews, see Shepard (1980) and Young (1987).

In terms of the framework presented earlier, the MDS dissimilarity matrix
is F. Note that there may not be a geometric space of any dimensionality for
which these dissimilarities can be represented by distances (for instance,
if the dissimilarities do not satisfy the triangle inequality), in which case
Vin does not have a geometric interpretation. Vout is the low-dimensional,
continuous space in which the points representing entities are positioned,
and G is Euclidean distance in Vout. Metric MDS selects the mapping M by
adjusting the positions of points in Vout, which minimizes

N∑
i=1

∑
j<i

(F(i, j)− G(M(i),M(j)))2. (3.1)

Under our assumptions, this objective function is identical to the C mea-
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sure. Expanding out the square in equation 3.1 gives

N∑
i=1

∑
j<i

(F(i, j)2 + G(M(i),M(j))2 − 2F(i, j)G(M(i),M(j))). (3.2)

The last term is twice the C measure. The entries in F are fixed, so the first
term is independent of the mapping. In metric MDS, the sum over the G’s
varies as the entities are moved in the output space. If one instead considers
the case where the positions of the points in Vout are fixed, and the problem
is to find the assignment of entities to positions that minimize equation 3.1,
then the sum over the G’s is also independent of the map. In this case the
metric MDS measure becomes exactly equivalent to C.

3.2 Minimal Wiring. In minimal wiring (Mitchison & Durbin, 1986;
Durbin & Mitchison, 1990), a good mapping is defined as one that maps
points that are nearest neighbors in Vin as close as possible in Vout, where
closeness in Vout is measured by, for instance, Euclidean distance raised to
some power. The motivation here is the idea that it is often useful in sen-
sory processing to perform computations that are local in some space of
input features Vin. To do this in Vout (e.g., the cortex) the images of neigh-
boring points in Vin need to be connected; the dissimilarity function in Vout
is intended to capture the cost of the wire (e.g., axons) required to do this.
Minimal wiring is equivalent to the C measure for

F(i, j) =
{

1 : i, j neighboring
0 : otherwise

G(M(i),M(j)) = ||M(i)−M(j)||p.

For the cases of one- or two-dimensional square arrays investigated in
Mitchison and Durbin (1986) and Durbin and Mitchison (1990), neighbors
are taken to be just the two or four adjacent points in the array, respectively.

3.3 Minimal Path Length. In this scheme, a good map is one such that,
in moving between nearest neighbors in Vout, one moves the least possible
distance in Vin. This is, for instance, the mapping required to solve the
traveling salesman problem (TSP), where Vin is the distribution of cities and
Vout is the one-dimensional tour. This goal is implemented by the elastic net
algorithm (Durbin & Willshaw, 1987; Durbin & Mitchison, 1990; Goodhill &
Willshaw, 1990), which measures dissimilarity in Vin by squared distances:

F(i, j) = ||vi − vj||2

G(p, q) =
{

1 : p, q neighboring
0 : otherwise
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where vk is the position of point k in Vin (we have only considered here the
regularization term in the elastic net energy function, which also includes
a term matching input points to output points). Thus, minimal wiring and
minimal path length are symmetrical cases under equation 2.1, with respect
to exchange of Vin and Vout. Their relationship is discussed further in Durbin
& Mitchison (1990), where the abilities of minimal wiring and minimal path
length are compared with regard to reproducing the structure of the map
of orientation selectivity in the primary visual cortex (see also Mitchison,
1995).

3.4 The Approach of Jones, Van Sluyters, and Murphy (1991). Jones,
Van Sluyters, and Murphy (1991) investigated the effect of the shape of
the cortex (Vout) relative to the lateral geniculate nuclei (Vin) on the overall
pattern of ocular dominance columns in the cat and monkey, using an op-
timization approach. They desired to keep both neighboring cells in each
LGN (as defined by a hexagonal array), and anatomically corresponding
cells between the two LGNs, nearby in the cortex (also a hexagonal array).
Their formulation of this problem can be expressed as a maximization of C
when

F(i, j) =
{

1 : i, j neighboring, corresponding
0 : otherwise

and

G(p, q) =
{

1 : p, q first or second nearest neighbors
0 : otherwise.

For two-dimensional Vin and Vout they found a solution such that if F(i, j) =
1, then G(M(i),M(j)) = 1, ∀i, j. Alternatively this problem could be ex-
pressed as a minimization of C when G(p, q) is the stepping distance (see
below) between positions in the Vout array. They found this gave appropriate
behavior for the problem addressed.

3.5 Minimal Distortion. Luttrell and Mitchison have introduced map-
ping functionals for the continuous case. Under appropriate assumptions
to reduce them to the discrete case, these are equivalent to C. Luttrell (1990,
1994) defined a minimal distortion principle that can be interpreted as a
measure of mapping quality. He defined “distortion” D as

D =
∫

dx P(x) d{x, x′[y(x)]}.

x and y are vectors in the input and output spaces, respectively. y is the map
in the input to output direction, x′ is the (in general different) map back
again, and P(x) is the probability of occurrence of x. x′ and y are suitably
adjusted to minimize D. An augmented version of D includes additive noise
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in the output space,

D =
∫

dx P(x)
∫

dn π(n) d{x, x′[y(x)+ n]},

where π(n) is the probability density of the noise vector n. Intuitively, the
aim is now to find the forward and backward maps so that the reconstructed
value of the input vector is as close as possible to its original value after being
corrupted by noise in the output space. In Luttrell (1990), the d function was
taken to be {x−x′[y(x)+n]}2. In this case, Luttrell showed that the minimal
distortion measure can be differentiated to produce a learning rule that is
almost the self-organizing map rule of Kohonen (1982).

For the discrete version of this, it is necessary to assume that appropriate
quantization has occurred so that y(x) defines a 1-1 map, and x′(y) defines
the same map in the opposite direction. In this case the minimal distortion
measure becomes equivalent to the C measure, with F(i, j) the squared Eu-
clidean distance between the positions of vectors i and j (assuming these to
lie in a geometric space) and G(p, q) the noise process in the output space
(generally assumed gaussian).

The minimal distortion principle was generalized in Mitchison (1995) by
allowing the noise process and reconstruction error to take arbitrary forms.
For instance, they can be reversed, so that F is a gaussian and G is Euclidean
distance. In this case, the measure can be interpreted as a version of the mini-
mal wiring principle, establishing a connection between minimal distortion
(and hence the SOM algorithm) and minimal wiring. This identification also
yields a self-organizing algorithm similar to the SOM for solving minimal
wiring problems, the properties of which are briefly explored in Mitchison
(1995).

Luttrell (1994) generalized minimal distortion to allow a probabilistic
match between points in the two spaces, which in the discrete case can be
expressed as

D =
∑

i

∑
j

F(i, j)
∑

k

P(k|i)P(j|k),

where D is the distortion to be minimized, F is Euclidean distance in the
input space, P(k|i) is the probability that output state k occurs given that
input state i occurs, and P(j|k) is the corresponding Bayes inverse probability
that input state j occurs given that output state k occurs. This reduces to C
in the special case that P(k|i) = P(i|k), which is true for bijections.

3.6 Dynamic Link Matching. Bienenstock and von der Malsburg (1987a,
1987b) considered position-invariant pattern recognition as a problem of
graph matching. Their formalism consists of two sets of nodes, one with
links expressing neighborhood relationships given by F(i, j) and one with
analogous links given by G(p, q). The aim is to find the bijective mapping
between the two sets of nodes that optimally preserves the link structure. By
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approximating the Hamiltonian for a particular type of spin neural network,
they derived an objective function H that in our notation (taking p = M(i),
q = M(j)) can be written as

H =
N∑

i,j=1

N∑
p,q=1

F(i, j)G(p, q)wipwjq

+ γ

 N∑
i=1

 N∑
p=1

wip − a

2

+
N∑

p=1

(
N∑

i=1

wip − a

)2
 . (3.3)

Here γ and a are constants, and wip is the strength of connection between
node i and node p. The first term is a generalized version of the C measure,
which allows a weighted match between all pairs of nodes i and p. The sec-
ond term enforces the regularization constraint that the sum of the weights
from or to each node is equal to a. When a = 1 and γ is large, the minima
of H are clearly the same as the maxima of C. More recent work has investi-
gated its potential as a general objective function for topographic mappings
(Wiskott & Sejnowski, 1997).

4 Application to a Simple Mapping Problem

To show the range of optimal maps that the C measure implies for different
F and G, we consider the very simple case of mapping between a regular
10 × 10 square array of points (Vin) and a regular 1 × 100 linear array of
points (Vout). This is a paradigmatic example of dimension reduction (also
used in Durbin & Mitchison, 1990 and Mitchison, 1995). It has the virtue
that solutions are easily represented (see Figures 2 and 3) and easily com-
pared with intuition. Calculation of the global optimum for this problem by
exhaustive search is clearly impractical, since there are of the order of 100!
possible mappings. Instead we employ simulated annealing (Kirkpatrick,
Gelatt, & Vecchi, 1983) to find a solution close to optimal. The parameters
used are given in the legend to Figure 2.

Figure 2 shows the best maps obtained by this method for the minimal
path, minimal wiring, and metric MDS versions of the C measure. Also
shown for comparison is a solution to this problem produced by the elastic
net algorithm, taken from Durbin & Mitchison (1990). An optimal map
for the minimal path version (A) is one with no diagonal segments. Our
simulated annealing algorithm found one with three diagonal segments and
a cost of 100.243, 1.3 percent larger than the optimal of 99.0. The optimal map
for the minimal wiring measure has been explicitly calculated (Mitchison &
Durbin, 1986), and has a cost of 914.0. Our algorithm found the map shown
in (B), which is similar in shape and has a cost of 917.0 (0.3 percent larger
than the optimal value). These results confirm that the simulated annealing
algorithm employed can find close to optimal solutions. The cost for the
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Figure 2: Maps found by optimizing using simulated annealing. (A) Minimal
path length solution. (B) Minimal wiring solution. (C) Metric MDS solution.
(D) Map found by the elastic net algorithm (see Durbin & Mitchison, 1990). Pa-
rameters used for simulated annealing were as follows (for further explanation,
see van Larhoven & Aarts, 1987). Initial map: random. Move set: pairwise inter-
changes. Initial temperature: 3× the mean energy difference over 10,000 moves.
Cooling schedule: exponential. Cooling rate: 0.998. Acceptance criterion: 1000
moves at each temperature. Upper bound: 10,000 moves at each temperature.
Stopping criterion: zero acceptances at upper bound.

metric MDS map (C) is 6,352,324. The illusion of multiple ends to the line
is due to the map frequently doubling back on itself. For instance, in the
fourth row up the square, the horizontal component for neighboring points
in the line progresses in the order 5, 6, 4, 7, 3, 8, 2, 9, 10. Local discontinuity
arises because this measure takes into account neighborhood preservation
at all scales: local continuity is not privileged over global continuity. The
costs of the map produced by the elastic net (D) are 102.3 for the minimal
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Figure 3: Minimal distortion solutions. (A) σ = 1.0, cost = 43.3. (B) σ = 2.0,
cost = 214.7. (C) σ = 4.0, cost = 833.2. (D) σ = 20.0, cost = 18467.1. Simulated
annealing parameters as in Figure 2.

path function, 1140 for the minimal wiring function, and 6,455,352 for the
metric MDS function. In each case this is a higher cost than for the maps
shown in (A), (B), and (C), respectively.

Figure 3 shows close-to-optimal maps for the minimal distortion version
of the C measure (F is squared Euclidean distance in the square, G is given
by e−d2/σ 2

where d is Euclidean distance along the line), for varying σ . For
small σ , the solution resembles the minimal path optimum of Figure 2A,
since the contribution from more distant neighbors on the line compared to
nearest neighbors is negligible. However, as σ increases, the map changes
form. Local continuity becomes less important compared to continuity at
the scale of σ , the map becomes spikier, and the number of large-scale
folds in the map gradually decreases until at σ = 20 there is just one. This
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last map also shows some of the frequent doubling back behavior seen in
Figure 2C.1

5 Discussion

5.1 Types of Mappings. Several qualitatively different types of map are
apparent in Figures 2 and 3. For the metric MDS measure, Figure 2C, the
line progresses through the square by a series of locally discontinuous jumps
along one axis of the square and a comparatively smooth progression in the
orthogonal direction. One consequence is that nearby points in the square
never map too far apart on the line. For the minimal distortion measure
with σ = 20 (see Figure 3D), the strategy is similar except that there is now
one fold to the map. This decreases the size of local jumps in following
the line through the square, at the cost of introducing a seam across which
nearby points in the square map a very long way apart on the line. For the
minimal distortion measure with small σ (see Figures 3A–C), the strategy
is to introduce several folds. This gives strong local continuity, at the cost
that now many points that are nearby in the square map to points that are
far apart on the line.

What do these maps suggest about which measures are most appropriate
for different problems? If it is desired that generally nearby points should al-
ways map to generally nearby points as much as possible in both directions,
and one is not concerned about very local continuity, then something like the
MDS measure is useful. This may be appropriate for some data visualiza-
tion applications where the overall structure of the map is more important
than the fine detail. If, on the other hand, one desires a smooth progres-
sion through the output space to imply a smooth progression through the
input space, one should choose something like minimal path or minimal
distortion for small σ . This may be important for data visualization where
it is believed the data actually lie on a lower-dimensional manifold in the
high-dimensional space. However, an important weakness of this represen-
tation is that some neighborhood relationships between points in the input
space may be completely lost in the resulting representation. For under-
standing the structure of cortical mappings, self-organizing algorithms that
optimize objectives of this type have proved useful (Durbin & Mitchison,
1990; Obermayer, Blasdel, & Schulten, 1992). However, very few other ob-
jectives have been applied to this problem, so it is still an open question
which are most appropriate. The type of map seen in Figure 3D has not
been much investigated. There may be some applications for which such
maps are worthwhile, perhaps in a neurobiological context for understand-

1 We have also explicitly optimized the objective functions proposed by Sammon (1969)
and Bezdek and Pal (1995). The former produces a map similar to that of Figure 2C, while
the latter resembles Figure 3D (for more details, see Goodhill & Sejnowski, 1996).
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ing why different input variables are sometimes mapped into different areas
rather than interdigitated in the same area.

5.2 Relation of C to Quadratic Assignment Problems. Formulating
neighborhood preservation in terms of the C measure sets it within the
well-studied class of quadratic assignment problems (QAPs). These occur
in many different practical contexts and take the form of finding the min-
imal or maximal value of an equation similar to C (see Burkard, 1984, for
a general review and Lawler, 1963, and Finke, Burkard, & Rendl, 1987, for
more technical discussions). An illustrative example is the optimal design
of typewriter keyboards (Burkard, 1984). If F(i, j) is the average time it takes
a typist to sequentially press locations i and j on the keyboard, while G(p, q)
is the average frequency with which letters p and q appear sequentially in
the text of a given language (note that in this example F and G are not neces-
sarily symmetrical), then the keyboard that minimizes average typing time
will be the one that minimizes the product

N∑
i=1

N∑
j=1

F(i, j)G(M(i),M(j))

(see equation 2.1), where M(i) is the letter that maps to location i. The sub-
stantial amount of theory developed for QAPs is directly applicable to the
C measure. As a concrete example, QAP theory provides several different
ways of calculating bounds on the minimum and maximum values of C for
each problem. This could be very useful for the problem of assessing the
quality of a map relative to the unknown best possible. One particular case
is the eigenvalue bound (Finke et al., 1987). If the eigenvalues of symmetric
matrices F and G are λi and µi, respectively, such that λ1 ≤ λ2 ≤ · · · ≤ λn
and µ1 ≥ µ2 ≥ · · · ≥ µn, then it can be shown that

∑
i λiµi gives a lower

bound on the value of C.
QAPs are in general known to be of complexity NP-hard. A large number

of algorithms for both exact and heuristic solution have been studied (see,
e.g., Burkard, 1984; the references in Finke et al., 1987; and Simić, 1991).
However, particular instantiations of F and G may allow efficient algorithms
for finding good local optima, or alternatively may beset C with many bad
local optima. Such considerations provide an additional practical constraint
on what choices of F and G are most appropriate.

5.3 Many-to-One Mappings. In many practical contexts, there are many
more points in Vin than Vout, and it is necessary also to specify a many-to-
one mapping from points in Vin to N exemplar points in Vin, where N =
number of points in Vout. It may be desirable to do this adaptively while si-
multaneously optimizing the form of the map from Vin to Vout. For instance,
shifting a point from one cluster to another may increase the clustering cost,
but by moving the positions of the cluster centers decrease the sum of this
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and the continuity cost. The elastic net, for instance, trades off these two
contributions explicitly with a ratio that changes during the minimization,
so that finally each cluster contains only one point and the continuity cost
dominates (Durbin & Willshaw, 1987; for discussions, see Simı́c, 1990, and
Yuille, 1990). The self-organizing map of Kohonen (1982) trades off these
two contributions implicitly. Luttrell (1994) discusses allowing each point
in the input space to map to many in the output space in a probabilistic
manner, and vice-versa. The H function (Bienenstock & von der Malsburg,
1987a, 1987b) offers an alternative way of introducing a weighted match
between input and output points.
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