Objective Functions for Topography: A
Comparison of Optimal Maps

Geoffrey J. Goodhill
Creorgetown Instliute for Cognltive and Computatlonal Sclences
Georgetown Unlveraity Medlcal Center
‘Washington D0 HEET, TT5A

Terrence J. Sejnowski
The Salk Institute for Blologleal Stwdles
La Jolla, CA 93037, USA

Topographic mappings are important in seversl conteodts, including data
visnalization, connectionist representation, and cortical structure. Many
different ways of guantifying the degree of topography of 3 mapping bave
been proposed. In order to investigate the consequences of the varying
assumptions that these different approaches embody, we have optimized
the mapping with respect to a number of different measores fr a vy
simple problem - the mapping from a sguare ta a line. The principal
resulis are that (1) different objective functions can prodoce very different
miaps, {2} only asmall number of these functions produce mappings which
match common iotuitions as to what a topographic mapping “should”
actually look like for this problem, (1) the objective functions can be put
into certain broad categories based om the overall form of the maps, and
{4} certain categories of objective functions may be more appropriate for
particular types of prablem than other categories.

1 Introduction

Problems of mapplog oceur Trequently In undesstanding blologleal processes,
in designlng connectlonist representations, and o formulating abstract meth-
odls of data analysls. An lmportant concept In all these domalins s that of a
“nelghbourhoed preserving”™ map, also sometimes relerred 1o as a topographic,
topologleal topology-preserving, orderly, or systematlc map. Intultively speak-
Ing. such maps take polots In gne space 1o polnts In another space such that
nearby polnts map to nearhy polots (and sometimes In addition far-away polnis
map to far-away points). Such maps are useful In data analysls and data visu-
allzatlon, where a cormmon goal 18 to represent data [rom a high-dimensional
space Lo a low-dimenslonal space a0 as wo preserve ag far as pesalble the “Internal
siructure” of the data In the high dimensional space (see eg. [11]). In psychol-
ogy. topographic mapplngs have been wsed to understand mental representa-
tlons: for Instance the idea that slmilar features of the world are represented
close together In some Internal semantic space [18). In neuroblolegy there are
many examples of neighbourhood-preseeving mapplngs, for Instance between
the retina and moee central structures [H)]. Another type of nelghbourhood-



preserving mapplng In the brain = that, {or lnstance, [rom the viswal world
io cells In the primary visual cortex which represent a small line segment at
a particular position and orlentation in the visual scene [8]. A possible goal
of such blolegleal maps = Lo represent nearby polots In some sendory “leature
space” by nearby polnts in the cortex [4]. This could be desirable since sensory
Inputs are often locally redundant: for Instance ln a visual scene plxel Intensi-
iles are highly predietable from those of thelr nelghbours. In order to perborem
“redundancy reduction™ (1], it s necessary to make comparisons between the
cutput of cells In the cortex that represent redundant Inputs. Two wavs this
could be achieved are elther by making a direct connection between these cells,
of by constructing a suitable highee-order peceptive feld at the next level of
peocessing. In both cases, the total lengih of wire required can be made short
when nearby polnts In the feature space map Lo nearby polots In the cortex
[see (3, 4, 16, 14 for further discussion).

A nuwrnber of different ob jective lupctions have bean proposed Lo measure the
degree of topogeaphy of a particular mapplog (for reviews gee [6, 7]). Glven the
wide varlety of quantliicatlon cholees avallable, It s loportant to undesstand
what lmpact these cholees have on the Torrm of the maps that each measues
best favoes. This glves lnslght Into which roeasures are most appropelate foe
particular tyvpes of applications. This paper addresses this guestion for a very
slmple problem: the mapping of 10 = 1) polots b a square array wo 1 = 100
polnts in & linear arcay (see figure 1). Our approach ks to explicitly optimize
several differant objective lunetions from the topegraphle mapplog literature
[or this case, and thus galn Inslght Into the type of representation that each
meagie forms.

2 Objective functions

The objective functlons Investigated are as follows (for more detalls see [6]).
Deefine the similarities In the Input space (square) as F(i, §), and in the output
space (line} as &(p,q) (figure 1), where i and j are points In the input space
and g and g are polots ln the output space. Let there be N polnts In total, and
M be a l-1 mapping from polnts In the lapot space to polnis in the outpat
apace. For the first thees of the measures consbdered, both F and {7 are taken to
be euclldean distances In the two spaces, with distance between nelghbourlng
polais In each space taken as unity.

# Metric Multidimensional Scaling [19): minimize
N
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s Spearman coefficlent [2): maximize
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where H; and 5; are the corresponding rankings In the ordered lists of
ithe F's and and s,

For the other four measures we conslder, slillarltles are nonlinear functions of
enclidean distance. They are all cases of the O measure (5, 7):

O =%"% Fli,j)G(M{i), M{j}),
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for different cholees of slmllacity noction.

3

s Minimal path length [4): F(i,j) = euclidean distance, Glpg) = 1 I

i, are nelghbourlng on the line and  otherwlse.

Minimal wiring [4): G{p, ) = enclidean distance, F(i, j) = 1 il i, j are
neighbouring ln the square and § otherwlse.

Minimal distortion [13): F(i, i} = squared euclidean distance, G{p,q) =
e—"ﬂ-"“t, where d = euclldean distance between p and g, and o = the
lengih scale in the output space over which nearby output polnts ghowld
represent slmllar lnput polnts. This s related 1o the minlmal path length
measure, but with a broader nelghbourhood function In the output space.

Inverted minimal distortion [15): G(p.q) = squared euclidean dis-
tance, F(i,j} = e~ /", where d = euclidean distance beiween  and j,
and o & now the equivalent lengih scale In the lnput space. This |z re-
lated to the minimal wiring measuee, bt with a broader nelghbowrbood
Munction in the lnput space.

Minimization procedure

There are of the grder of 1Y possible mapplngs for thls problem, and thes optl-
mlzatlon by exhaustive search ls clearly lmpractical. Instead we used slmuolated
anneallng, a heurlstlc optimization methed [8). This pedforms gradient descent
[or ascent, as appropelate) in the objective function, but allows occaslonal steps
in the wrong directlon so that the selutlon is less Hkely to get stuck 1n a local
optimum. The probabllity of taking a step In the wrong directlon s conteolled
by a “temperature” parameter that Is geadually reduced. The parameters wsed
were as [ollows [12]. The inltlal map between points In the square and polnis on
ithe line was random. AL each step. & candldate move conslsted of Interchang-
Ing & random palr of polots In the map. This move was accepted with 100%
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Figure 1: The example mapplng problem [only 25 polnts are shown). The
matrix Fi, j) defines similarities In the Input space (square), the matrely &(p, g)
defines gimilaritles in the output space (lne), and M I8 the 1-1 map between
ihe two spaces.

probability If it Impeoved the value of the objecilve functlon, or with a proha-
bility deterrolned by the teroperature I 11 did mot. Onee the sooner of 10,000
candldatie moves had been generated or 1EY moves accepted, the temperatuees
was mulilplied by (L9908, The procedure was termlinated when no moves wers
accepted out of 10,000 candldates at the same temperature. Empleleally, thess
values were found o produce close to optlmal solutions for cases where the
optimal solutlon I8 explicitly known {see Agure 2).

4 Results

Flgure 3 shows the maps found for the metrle MDS, Sammen and Spearman
measures. The Muslon of multlple ends io the line ls due wo the map [reguently
doubling back on lisell. For Instance, consbder the fifth cplumn of the square for
the optimal Sammon map (figure 3(b)). Initlally the line meets this column at
ihe polnt (5.1), countlng from the bettom lefi corner of the square. However,
the next polnt In the map 18 actually (5,10), lllowed by (5. 6), (5, 8), (5.
7). (54), (5,9), (5,5), (5,3), and (5,2). where the line then proceeds on to the
sleih columnp. This strong local dlscontlnnity 18 the resuli of the more global
optimlzation concerns that dorpinate these measures.

Figure 4 shows minlral distortlon solutlons for varying o. For amall o,
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Flgure 2: Teailng the mlnimlzatlon algorithm [or cases where the optlma are
explicitly known. (a) Mininal path length solution, length = 100.243, 1.3%
longer than the optimal of 88.0. (b} Minimal wiring solution, length = 917.0,
0.3% longer than the optimal of 914.0 [4]. An opilmal minimal path length
splutlon was found when the coollng rate was lncreased to (.9990% and the
upper bownd Inereased to LOO, (M), however 1t was computationally Ilmpeactlcal
i run all the slmulations this slowly.

the aolution resembles the minimal path optimom of fgure 2(a). slnce the con-
iributlon feom mose distant nelghbours than nearest pelghbours = neglipihble.
However, as o Inereaseq the map changes formn. Local continuity becomes leas
Imporiant compared to contlnaity at the scale of ¢, the map beconmes more
splky, and the number of large-scale folds o the map geadually deceeases unilil
at & = 20 there l5 just one. This last map also shows some of the [reguent
doubling back behaviowr seen In fguee 3.

Flgure 5 shows analogous results lor reversed minlmal distortion. For amall
o the map somewhat resermbles the minlmal wiring map of figure 2(b), as
cxpected. However, as o lncreases, the map rapidly takes on & locm remlnlscent
of fgure 3.

In terms of genaral appearance, the optlimal maps we have caleulated can
he placed lnto Four classes.

1: Metrle MDS, Sammon, reversed minimal distortlon for o = 4.0 (figs
3 a), 3(h), 5{d)). Thess mapa are very locally discontinuous but have a charae-
terlatie overall lorm. This is because they all take Into aceount nelghbourhood
preservatlon al off seafee Thus local contlbolty s oot pelvileged over global
contlonity, and global concerns dominate.

2: Minimal distortlon for o < 4.0 {fig 4{a-c)). Only local nelghbourhoods on
the line are of Interesi. For o ~ 1 this means ln effect only nearest nelghbours,
and so the line meanders randomly theough the square. As o lncreases, the line
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Flgure 3: Solutlons found by slmulated annealing lor the square to llne problem.
[a) Metric MDS measure, cost = 9570087 8 (b) Sammon measure, cost = 38.5.
[e) Spearman measure, cost = 0.G98. For these measures, global topography
dominates local topography. (d) For comparison, & map found by the elastle
net algorithm [4). This ks less optimal than any of the maps shown In this paper
with peapect to the objective luncilons lor which they were opilinized.
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Flgure 4: Minlmal distortlon solutlons found by simulated annealing foe the
square 1o line problem. (a) o = 1.0, cmat = 43.3. (b} o = 2.0, cost = 214.7. (¢)
o = 4.0, cost = B33.2, (d) o = JL0, ecost = 18467.1. Note how the seale of the
folding of the map changes with .
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Figure 5: Reversed minlmal distortion solutlons found by slulated anneallng
for the square to llne problem. (a) & = LA, cost = G250.2. (b) & = 2.0, cost =
64691 (c) & = 3.0, cost = 349926.5. (d) & = 4.0, cost = B51TEL.A.



is emcouraged to fold to try Lo keep more distant nelghbouwrs close: the scale of
the fplding depends on o.

3: Spearman, minimal distortlon for & = 30 (fGgs 3(c). 4(d)). Although
these share with class 1 the property of having very global concerns, they hoth
have a characterlstle horgeshos shape.

4: Reversed minimal distortlon with o < 3.0 (fig 5{a-c)). These have long
siretches In the mliddle, with rapld slg-eags at the edge.

5 Discussion

O the measures we have consldered. only minimal distortion produces Intu-
Itlvely appeallng maps for this problem. An lnteresting polnt Is that the mini-
mal distorilon measure ls almost an objectlve luneilon for the S0OFM algorlithm
10}, with o determining the size of the nelghbourhood function [13). In the
S0FM algorlthm however o decreases with tlme, making It hard to draw direct
analogles. It could be that the Intultive appeal of the maps produced by min-
imal distertion ls preclsely becawse of wide famlliariiy with the behaviour of
ithe SOFM, rather than for any reason more ficmly rooted o the mathermatlces
of nelghbourhood preservation.

What do these resulis tell us abowt which measures are appropriate for dif-
ferent problems? I It 18 desired that generally nearby polots should always map
to generally nearby polots as moch as possible in both dicectlons, and one is
not. concerned about very local contloulty, then measures ln clags 1 are uselul.
This may be approprlate for some data viswallzatlon applicatlons where the
overall structure of the map s more Important than lis fine dedall. I, on the
oiher hand, one wants a amooth progression theough the output space to Imply
a amooth progression theough the Input space. one should choose [rpm class
2. Thiz may he lmportant for data visuallzatlon wheee It 1 helleved the data
actually lles on a lower-dimenslonal manifold ln the high-dlmenslonal space.
However, an Important. weakness for this representation ls that some nelgh-
bourhoed eelationships between polnts In the lnput space may be completely
loat In the resulting representatlon. For understanding the struciure of corileal
mapplogs, sell-organlzing algorithms that opilmize objectlves ln class 2 have
proved useful [4]. Very few other objectives have been applied to this problem
though, so it l= still an open quesilon which are most appropriate. Classes 3
and 4 represent pathologles that have been hitherto unappreclated. Thers may
be some applleatbons lor which they are worthwhile, but fof braln maps they
are ungultable.

6 Conclusions

This paper has attempied to Impose some order on the space of popular mea-
sures of nelghbourhood preservatlon, in order to better understand topogeaphle
mapplog methods in data analysls, connectlonlam and neuroblology. We con-
sldered a mapping problern that representis an extremely slmple example of a



mismatch between the dimensbons of the lnput space and the outpat space.
By examinlng the maps glven by optlmlzing each roeasure, we teled to geoup
together different iypes of opilmal maps and thes the meagures that generated
ithem. The maln concluslons are as follows.

L. The optimal maps span a surprisingly broad subspace of possible maps,
and Inelude maps lacking local contlaaliy.

2. This subspace s much larger than the space of maps that are often
referred Lo as topographic. This suggests that great cauilon ghould be used In
relylng on visual Inspectlon to judge degrees of topogeaply.

3. The subspace of optimal maps, and thes the measures that generated
ithem, can he divided Inio four maln classes hagsed on the general form of the
maps prodeced.

d. The structure of thls subspace can provide guldance In choosing the
most appeoprlate mapping measure to apply to more complex mapplng peob-
lems. For Instance, inding a highly curved manifold In & high dimenslonal space
requires preservatbon of local but not global topography, whereas forming a low
dimensbonal representation of the relatlonships between clusters In a high di-
mensional space [ignoring structure within a cluster) requires preservatlon of
glohal but nod local topography. In general, the sensible use of topographlc
mapplng technlgues requires a good understanding of the nature of the partle-
wlar applleatbon.
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