
*Corresponding author.

Neurocomputing 26}27 (1999) 39}43

Limitations on detection of gradients of di!usible
chemicals by axons

J.S. Urbach!,*, Geo!rey J. Goodhill"
!Department of Physics, Georgetown University, Washington, DC 20057, USA

"Georgetown Institute for Cognitive and Computational Sciences, Georgetown University Medical Center,
Washington DC 20007, USA

Abstract

This paper applies a simple analysis of the statistical noise inherent in sensing concentrations
of di!usible chemical factors to the problem of guidance of developing axons. We show that
growth cones may be able to detect chemical changes of 0.5% across their width, and that
guidance by a gradient is limited to distances below about 1 cm, even for a gradient of ideal
shape. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Axons in the developing brain use a variety of guidance cues to "nd their targets. In
many important cases, guidance is achieved by following gradients in the concentra-
tion of a ligand that binds to receptors on the growth cone [10,9]. Ligand gradients
can be set by a variety of mechanisms, including di!usion in a three-dimensional
volume, di!usion on a two-dimensional substrate, or by binding from a three-
dimensional volume onto a two- or three-dimensional substrate, as well as by the
graded expression on a substrate. Axons move up or down on these gradients until
they reach their targets, or until other guidance cues take over.

In order to move reliably in response to a chemical gradient, the growth cone of the
developing axon must perform some relatively sophisticated signal analysis to over-
come the noise inherent in a measurement of molecules that move about randomly
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through Brownian motion. The fundamental statistical limitations on gradient detec-
tion by a small sensing device were originally described by Berg and Purcell [2], in the
context of understanding chemotaxis in leukocytes and bacteria. However, very little
is known of the biochemical mechanisms of axonal guidance, and no analogous
theoretical models of the gradient sensing process have been proposed. In this paper
we therefore begin the process of quantitatively analysing axonal gradient detection
by applying the approach of Berg and Purcell to several situations important in the
developing brain.

2. Statistical limits on gradient sensing

The presence of a ligand gradient will produce a variation in the average occupancy
of receptors across the growth cone. There are a number of biochemical pathways by
which the di!erence in receptor occupancy might be converted into directed motion,
but those responsible for axon guidance have not been identi"ed. Regardless of the
speci"c mechanism, quantitative limits on the guidance process can be obtained from
the fact that, at any instant in time, the actual occupancy of the receptors will di!er
from the average. If these #uctuations are large compared to the di!erence in the
average that arises from the concentration gradient, the growth cone will not be able
to obtain a clean guidance signal from an instantaneous measurement. The random
noise can be overcome by making a su$cient number of statistically independent
measurements.

A rough estimate for the necessary averaging time can be obtained by considering
the kinetics of the di!usion process. A volume < of #uid with an average ligand
concentration C will contain, on average, N"<C ligand molecules. The actual
number of molecules will di!er from the average, and the standard deviation of the

#uctuations is simply JN. Thus, the root mean square (rms) #uctuation in an

instantaneous measure of the concentration, *C
/0*4%

, is given by *C
/0*4%

/C"1/J<C.
If M statistically independent measurements are averaged, the rms #uctuation is

reduced by 1/JM. For a di!usive process, statistically independent measurements in
a single volume can only be made by waiting long enough for molecules to di!use
across the volume. For a spherical volume<, this time is on the order of<2@3/D, where
D is the di!usion coe$cient for the ligand. Thus, averaging over a time ¹ is roughly
equivalent to making ¹D/<2@3 independent measurements. Combining the above
considerations yields an estimate for the fractional uncertainty of

*C
/0*4%
C

"

1

J<1@3D¹C
. (1)

This calculation neglects all of the details of the sensing process, but turns out to agree
quite well with the more sophisticated calculation of Berg and Purcell (BP) in most of
the physiologically relevant regimes. BP considered a spherical cell of radius a"<1@3,
uniformly covered with N receptors, each with an active area s. BP assumed
perfectly absorbing receptors (the ligand is internalized), and a di!usion-limited
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receptor}ligand interaction (the time required to absorb a ligand is dominated by the
time it takes the ligand to di!use to the receptor). Their result for the fractional
uncertainty is

*C
/0*4%
C

"S
1

2p¹DaNs/(Ns#pa)CC
1@2

/(C#C
1@2

)
, (2)

where C
1@2

is the concentration at which half of the receptors are bound (the
dissocation constant K

D
). In many cases, the term that accounts for the "nite area

covered by the receptors, Ns/(Ns#pa), is close to unity, because even a relatively
sparse population of receptors has a high probability of capturing any ligands in the
neighborhood. For concentrations on the order of C

1@2
, CC

1@2
/(C#C

1@2
) is of order

C, and Eq. (2) reduces to 1, except for the factor of 2p.
Eq. (2) is more transparent when written in a dimensionless form. Writing the time

necessary for di!usion across the volume, as described above, as ¹
D
"a2/D, the

number of molecules in volume a3 at concentration C
1@2

as N
1@2

"C
1@2

a3, and the
e!ective fraction of the surface area covered by the receptors as f"Ns/(Ns#pa), Eq.
(2) can be written

*C
/0*4%
C

"S
1

2p(¹/¹
D
)N

1@2
f C/(C#1)

, (3)

where C"C/C
1@2

. Combining the concentration-independent factors into a single
constant a"2p(¹/¹

D
)N

1@2
f that measures the e!ective number of individual receptor

measurements going into the average, Eq. (3) becomes simply

*C
/0*4%
C

"S
CM #1

aCM
. (4)

An interesting feature of this equation is that the fractional uncertainty tends to

a constant for CA1. As the concentration increases the number of molecules available
increases, which increases the e!ectiveness of the averaging. The number of unbound
receptors becomes very small, however, increasing the uncertainty, and the two e!ects
exactly cancel. More sophisticated models, taking into account the dynamics of the
receptor}ligand interaction and limitations of the intra-cellular signaling mechanisms,
have been developed for certain cases [3,8], and typically produce a more realistic

decrease in the fractional sensitivity for CA1.
Finally note that, in order to detect a concentration gradient between two spatially

separated points, the average concentration di!erence between the two points,

*C
536%

, must be greater than J2*C
/0*4%

. (The factor of J2 arises from the fact that the
noise at the di!erent points is assumed to be statistically independent.)

3. Results

A typical growth cone has a radius of 10 lm. Ligand concentrations can vary over
a very wide range, but a typical value for the dissociation constant for many
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receptor}ligand pairs implicated in axon guidance (see references cited in [6]) is 1 nM.
Thus N

1@2
+2500, and in this case the instantaneous uncertainty is about 2%. For

a freely di!using molecule the size of the chemoattractant netrin [7] in vivo,
D+10~7 cm2/s (see [4]), so ¹

D
+10 s. Growth cones take on the order of 100 s to

show a turning response [11], allowing for about 10 independent concentration
measurements (assuming the receptor}ligand interaction is di!usion limited). As

a result, 1/Ja+0.0025, suggesting a minimum detectable fractional change of about
0.5% across the growth cone. Quantitative experimental data on chemotaxis in axons
is quite limited, but a turning response has been seen for gradients as small as 1%
across the growth cone [1].

Another interesting number can be derived by considering the optimal gradient
shape for guiding the axon over a large distance. The optimal gradient has a percent
concentration change across each growth cone diameter equal to the minimum
required for detection. Setting d(ln (C))/d(x/a) equal to Eq. (3) and integrating gives

x

a
"!J2a log[2(JCM 2#CM #CM #1

2
)]#B, (5)

where B is a constant of integration. The value of the constant can be set by assuming
that there exists a maximum allowable concentration, C

.!9
, beyond which the concen-

tration cannot be accurately determined. (Thereby, crudely compensating for the
inadequacies of the BP model at high concentrations, as discussed above.) Guidance
over the maximum possible distance is achieved when B is such that the concentration
at x"0 is C

.!9
: B"!aJ2a log[2(JCM 2

.!9
#CM

.!9
#CM

.!9
#1

2
)]. The maximum

guidance distance is determined by solving Eq. (5) for the value of x where C"0,
which yields

x
.!9
a

"J2a log[2JCM 2
.!9

#CM
.!9

#2CM
.!9

#1
2
]. (6)

Assuming C
.!9

A1, this reduces to x
.!9

/a"J2a log(4C
.!9

). Substituting the value of

a estimated above, and setting C
.!9

"100 yields x
.!9

+1 cm. This is in rough
agreement with estimates based on simpler models [6,5]. The natural length scale for

this problem is aJa, which gives the distance between C"1 and C"0 for a linear

gradient with a slope equal to the minimum detectable gradient at C"1. Note that all
of the details of the sensing mechanism show up in the logarithm. This presumably
accounts for the success of this approach, which so far ignores all details of the
biochemistry of developing axons.
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